
Tetrahedron Letters No. 52, pp 4867 - 4870, 1976. Pergamon Press. Printed in Great Britain.

A SHORT, EFFICIENT SYNTHESIS OF METHYL DL-JASMONATE AND RELATED COMPOUNDS¹

Andrew E. Greene and Pierre Crabbé Laboratoire de Chimie Organique, C.E.R.M.O., Université Scientifique et Médicale, 38041 Grenoble, France

(Received in UK 26 October 1976; accepted for publication 14 November 1976)

Methyl jasmonate (4) is found in Jasminum grandiflorum L. and is essential for the characteristic odor of Jasmine^{2,3}. Because of its importance, it has been the objective of several published chemical syntheses⁴, all of which, however, are long (7 steps or more) and proceed in low yield (30% or less). We now wish to report a short, high yield synthesis of methyl dl-jasmonate and some related compounds based on a conjugate addition-alkylation⁵ of cyclopent-enone in which the allyl group is used as an acetic acid synthon. Malonic esters and other derivatives of acetic acid (ester) would appear to be unsuitable⁶ for use in this type of approach.

$$5 R = \underline{n} - C_5 H_1$$

Addition of cyclopentenone (<u>1</u>) to a slight excess of lithium diallylcuprate⁷ in THF at -78° readily generated the copper-lithium enolate of 3-allylcyclopentanone⁸ which, after treatment with tetramethylethylenediamine (TMED)^{5b,d}, was smoothly alkylated with 1-iodo-2-pentyne⁹ in hexamethylphosphoramide (HMPA) to afford the disubstituted ketone (<u>2</u>) [I.R. : v_{max} (film) 3075, 1740, 1638, 915 cm⁻¹; N.M.R. : δ (CDCl₃) 1.07 (t, J = 7Hz, 3-H), 5.05 (m, 2-H), 5.7 ppm (broad m, 1-H)] in <u>ca</u>. 60% yield (although not optimized). Despite the well known tendency of cyclopentanone enolates to undergo rapid proton transfer reactions leading to equilibration^{5b} and thus to mixtures of products, using this reactive electrophile we found only relatively small amounts of polyalkylated material and no appreciable amount of any positional isomer or of the <u>cis</u>isomer of the disubstituted cyclopentanone (<u>2</u>). In addition, no rearrangement^{5b} products were detected. These favourable features eliminated the need of having to effect a tedious separation of isomers, a problem inherent in many of the other syntheses⁴.

Selective ozonolysis¹⁰ of the ene-yne (2) in methanol-methylene chloride at -78° followed by oxidative work **u**p (addition of dimethyl sulfide¹¹, solvent evaporation, and treatment with Jones reagent in acetone) readily gave dehydrojasmonic acid⁴, which was converted with diazomethane to pure methyl dehydrojasmonate (3)⁴, in an overall yield of greater than 80%. The acetylenic bond was completely stable under these conditions.

To complete the synthesis, methyl dehydrojasmonate $(\underline{3})$ was hydrogenated in acetone using the Lindlar catalyst¹² to afford methyl dl-jasmonate $(\underline{4})^{2,4}$. Methyl dl-dihydrojasmonate $(\underline{5})^{2,4}$ could also be obtained from $(\underline{3})$ by catalytic hydrogenation in ethyl acetate using 5% palladium on carbon. Methyl dl-jasmonate $(\underline{4})$ and methyl dl-dihydrojasmonate $(\underline{5})$, both obtained in nearly quantitative yields from compound $(\underline{3})$, displayed spectral and chromatographic properties in complete agreement (except for rotation) with those of authentic samples².

The short, efficient synthesis described above demonstrates the value of this approach to α -substituted- β -carboxyalkyl ketones from α,β -unsaturated ketones¹³.

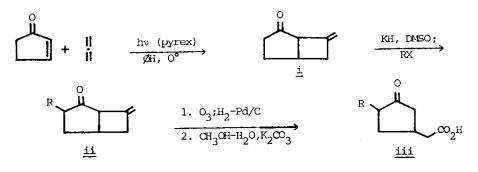
Acknowledgements

We wish to thank Dr. E. Demole (Firmenich, Geneva) for a sample of methyl jasmonate. A.E.G. thanks the C.I.E.S. (Paris) for a post-doctoral fellowship. This work was supported by D.G.R.S.T. (contract n°73-7-1875) and C.N.R.S. (E.R.A. n°478).

References

- Contribution N°18 from the Laboratoire de Chimie Organique, C.E.R.M.O. For N°17 see : P. Crabbé in "Advances in Prostaglandins", Plenum Publ. Co. Ltd., London, in press.
- 2. E. Demole, E. Lederer and D. Mercier, Helv. Chim. Acta, 45, 675 (1962).
- The corresponding acid is a green plant growth inhibitor : D.C. Aldridge,
 S. Galt, D. Giles and W.B. Turner, J. Chem. Soc., C. 1623 (1971).
- 4. For a review, see : T-L. Ho, <u>Synthetic Comm.</u>, <u>4</u>, 265 (1974) ; see also :
 S. Torii, H. Tanaka and T. Mandai, <u>J. Org. Chem.</u>, <u>40</u>, 2221 (1975), and
 F. Johnson, P. Kenneth and D. Favara, German Patent 2, 508, 295 (1975)
 [<u>Chem. Abst.</u>, <u>84</u>, 558 (1976)].
- 5. a) G.H. Posner, Org. React., 19, 1 (1972) ; b) G.H. Posner, J.J. Sterling, C.E. Whitten, C.M. Lentz, and D.J. Brunelle, <u>J. Amer. Chem. Soc.</u>, 97, 107 (1975), and references cited ; c) J.W. Patterson, Jr., and J.H. Fried, <u>J.</u> Org. Chem., <u>39</u>, 2506 (1974) ; d) R.M. Coates and L.O. Sandefur, <u>ibid</u>, <u>39</u>, 275 (1974).
- A.I. Meyers and N. Nazarenka, <u>J. Org. Chem.</u>, <u>38</u>, 175 (1973); A.I. Meyers,
 D.L. Temple, R.L. Nolen and E.D. Mihelich, <u>ibid.</u>, <u>39</u>, 2778 (1974), and
 references cited.
- 7. G. Daviaud and P. Miginiac, <u>Tetrahedron Lett.</u>, 3345 (1973), and references cited.
- 8. Work up after 30 min afforded a 95% yield of 3-allylcyclopentanone. The reaction of a mixed cuprate, $(\emptyset 0)$ (\longrightarrow CuLi, with cyclopentenone in Et₂O-THF (but not in THF alone)^{5a,7} was also nearly quantitative. Coates and Sandefur^{5d} have shown, however, a deleterious effect of Et₂O in the alkyl-ation reactions of copper-lithium enolates, thus making the diallylcuprate-THF system more attractive.
- 9. 1-Iodo-2-pentyne was readily prepared by the following sequence :

 $\begin{array}{cccccc} \text{HC} \equiv \text{CC}_2\text{H}_5 & \xrightarrow{\text{BuLi}, \text{THF}} & \text{HOCH}_2\text{C} \equiv \text{CC}_2\text{H}_5 & \xrightarrow{1 \cdot \text{PBr}_3} & \text{ICH}_2\text{C} \equiv \text{CC}_2\text{H}_5 \\ & & -78^\circ \rightarrow 0^\circ & & 2 \cdot \text{NaI, acetone} \\ & & & (90\%) & & (75\%) \end{array}$


For an alternative preparation, see : T. Yoshida, A. Yamagucihi, and A. Komatsu, <u>Agr. Biol. Chem.</u> (Tokyo), <u>30</u>, 370 (1966).

- P.M. McCurry, Jr., and K. Abe, <u>Tetrahedron Lett.</u>, 1387 (1974); P.S. Bailey, Chem. <u>Rev.</u>, <u>58</u>, 925 (1958).
- J.J. Pappas, W.P. Keaveney, E. Gancher and M. Berger, <u>Tetrahedron Lett.</u>,
 4273 (1966). Treatment of the ozonide directly with Jones reagent (A.S.

4869

Narula and S. Dev, ibid., 1733 (1969)) or with silver oxide (F. Asinger, <u>Ber.</u>, <u>75 B</u>, 656 (1942)) give inferior results.

- 12. H. Lindlar, <u>Helv. Chim. Acta</u>, <u>35</u>, 446 (1952).
- 13. We have also found, based on work by Eaton¹⁴, that the isomeric 2-alkyl-4carboxymethylcyclopentanones (<u>iii</u>) can be synthesized by the method outlined below :

14. P.E. Eaton, Tetrahedron Lett., 3695 (1964).